Premium
Benchtop 19 F NMR spectroscopy as a practical tool for testing of remedial technologies for the degradation of perfluorooctanoic acid, a persistent organic pollutant
Author(s) -
Heerah Kavi,
Waclawek Stanislaw,
Konzuk Julie,
Longstaffe James G.
Publication year - 2020
Publication title -
magnetic resonance in chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.483
H-Index - 72
eISSN - 1097-458X
pISSN - 0749-1581
DOI - 10.1002/mrc.5005
Subject(s) - chemistry , perfluorooctanoic acid , nuclear magnetic resonance spectroscopy , spectroscopy , degradation (telecommunications) , environmental remediation , fluorine 19 nmr , reagent , proton nmr , environmental chemistry , contamination , organic chemistry , telecommunications , ecology , physics , quantum mechanics , computer science , biology
The development of effective remedial technologies for the destruction of environmental pollutants requires the ability to clearly monitor degradation processes. Nuclear magnetic resonance (NMR) spectroscopy is a powerful tool for understanding reaction progress; however, practical considerations often restrict the application of NMR spectroscopy as a tool to better understand the degradation of environmental pollutants. Chief among these restrictions is the limited access smaller environmental research labs and remediation companies have to suitable NMR facilities. Benchtop NMR spectroscopy is a low‐cost and user‐friendly approach to acquire much of the same information as conventional nuclear magnetic resonance (NMR) spectroscopy, albeit with reduced sensitivity and resolution. This paper explores the practical application of benchtop NMR spectroscopy to understand the degradation of perfluorooctanoic acid using sodium persulfate, a common reagent for the destruction of groundwater contaminants. It is found that Benchtop 19 F NMR spectroscopy is able to monitor the complete degradation of perfluorooctanoic acid into fluoride; however, the observation of intermediate degradation products formed, which can be observed using a conventional NMR spectrometer, cannot be readily distinguished from the parent compound when measurements are performed using the benchtop instrument. Under certain reaction conditions, the formation of fluorinated structures that are resistant to further degradation is readily observed. Overall, it is shown that benchtop 19 F NMR spectroscopy has potential as a quick and reliable tool to assist in the development of remedial technologies for the degradation of fluorinated contaminants.