z-logo
Premium
ESR study of molecular orientation and dynamics of TEMPO derivatives in CLPOT 1D nanochannels
Author(s) -
Kobayashi Hirokazu,
Furuhashi Yuta,
Nakagawa Haruka,
Asaji Tetsuo
Publication year - 2016
Publication title -
magnetic resonance in chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.483
H-Index - 72
eISSN - 1097-458X
pISSN - 0749-1581
DOI - 10.1002/mrc.4423
Subject(s) - chemistry , substituent , radical , molecular dynamics , rotational diffusion , rotational correlation time , activation energy , crystallography , computational chemistry , stereochemistry , molecule , organic chemistry
The molecular orientations and dynamics of 2,2,6,6‐tetramethyl‐1‐piperidinyloxyl (TEMPO) radical derivatives with large substituent groups at the 4‐position (4‐X‐TEMPO) in the organic one‐dimensional nanochannels within the nanosized molecular template 2,4,6‐tris(4‐chlorophenoxy)‐1,3,5‐triazine (CLPOT) were examined using ESR. The concentrations of guest radicals, including 4‐methoxy‐TEMPO (MeO‐TEMPO) or 4‐oxo‐TEMPO (TEMPONE), in the CLPOT nanochannels in each inclusion compound (IC) were reduced by co‐including 4‐substituted‐2,2,6,6‐tetramethylpiperidine (4‐R‐TEMP) compounds at a ratio of 1 : 30–1 : 600. At higher temperatures, the guest radicals in each IC underwent anisotropic rotational diffusion in the CLPOT nanochannels. The rotational diffusion activation energy, E a , associated with MeO‐TEMPO or TEMPONE in the CLPOT nanochannels (6–7 kJ mol −1 ), was independent of the size and type of substituent group and was similar to the E a values obtained for TEMPO and 4‐ hydroxy‐TEMPO (TEMPOL) in our previous study. However, in the case in which TEMP was used as a guest compound for dilution (spacer), the tilt of the rotational axis to the principal axis system of the g ‐tensor, and the rotational diffusion correlation time, τ R , of each guest radical in the CLPOT nanochannels were different from the case with other 4‐R‐TEMP. These results indicate the possibility of controlling molecular orientation and dynamics of guest radicals in CLPOT ICs through the appropriate choice of spacer. Copyright © 2016 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here