z-logo
Premium
Solvent effects in the GIAO‐DFT calculations of the 15 N NMR chemical shifts of azoles and azines
Author(s) -
Semenov Valentin A.,
Samultsev Dmitry O.,
Krivdin Leonid B.
Publication year - 2014
Publication title -
magnetic resonance in chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.483
H-Index - 72
eISSN - 1097-458X
pISSN - 0749-1581
DOI - 10.1002/mrc.4119
Subject(s) - supermolecule , chemistry , solvation , chemical shift , polarizable continuum model , computational chemistry , solvent effects , solvent , density functional theory , carbon 13 nmr , organic chemistry , molecule
The calculation of 15 N NMR chemical shifts of 27 azoles and azines in 10 different solvents each has been carried out at the gauge including atomic orbitals density functional theory level in gas phase and applying the integral equation formalism polarizable continuum model (IEF‐PCM) and supermolecule solvation models to account for solvent effects. In the calculation of 15 N NMR, chemical shifts of the nitrogen‐containing heterocycles dissolved in nonpolar and polar aprotic solvents, taking into account solvent effect is sufficient within the IEF‐PCM scheme, whereas for polar protic solvents with large dielectric constants, the use of supermolecule solvation model is recommended. A good agreement between calculated 460 values of 15 N NMR chemical shifts and experiment is found with the IEF‐PCM scheme characterized by MAE of 7.1 ppm in the range of more than 300 ppm (about 2%). The best result is achieved with the supermolecule solvation model performing slightly better (MAE 6.5 ppm). Copyright © 2014 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here