Premium
HSQC‐ADEQUATE: an investigation of data requirements
Author(s) -
Martin Gary E.,
Hilton Bruce D.,
Willcott M. Robert,
Blinov Kirill A.
Publication year - 2011
Publication title -
magnetic resonance in chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.483
H-Index - 72
eISSN - 1097-458X
pISSN - 0749-1581
DOI - 10.1002/mrc.2757
Subject(s) - heteronuclear single quantum coherence spectroscopy , multiplicity (mathematics) , chemistry , correlation , algorithm , computer science , two dimensional nuclear magnetic resonance spectroscopy , mathematics , stereochemistry , geometry , mathematical analysis
Utilizing 13 C‐ 13 C connectivity networks for the assembly of carbon skeletons from HSQC‐ADEQUATE spectra was recently reported. HSQC‐ADEQUATE data retain the resonance multiplicity information of the multiplicity‐edited GHSQC spectrum and afford a significant improvement in the signal‐to‐noise (s/n) ratio relative to the 1,1‐ADEQUATE data used in the calculation of the HSQC‐ADEQUATE spectrum by unsymmetrical indirect covariance (UIC) processing methods. The initial investigation into the computation of HSQC‐ADEQUATE correlation plots utilized overnight acquisition of the 1,1‐ADEQUATE data used for the calculation. In this communication, we report the results of an investigation of the reduction in acquisition time for the 1,1‐ADEQUATE data to take advantage of the s/n gain during the UIC processing to afford the final HSQC‐ADEQUATE correlation plot. Data acquisition times for the 1,1‐ADEQUATE spectrum can be reduced to as little as a few hours, while retaining excellent s/n ratios and all responses contained in spectra computed from overnight data acquisitions. Concatenation of multiplicity‐edited GHSQC and 1,1‐ADEQUATE data also allows the interrogation of submilligram samples with 1,1‐ADEQUATE data when using spectrometers equipped with 1.7‐mm Micro CryoProbes ™. Copyright © 2011 John Wiley & Sons, Ltd.