z-logo
Premium
7 Li NMR chemical shift titration and theoretical DFT calculation studies: solvent and anion effects on second‐order complexation of 12‐crown‐4 and 1‐aza‐12‐crown‐4 with Lithium cation in several aprotic solvents
Author(s) -
Masiker Marilyn C.,
Mayne Charles L.,
Boone Brian J.,
Orendt Anita M.,
Eyring Edward M.
Publication year - 2010
Publication title -
magnetic resonance in chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.483
H-Index - 72
eISSN - 1097-458X
pISSN - 0749-1581
DOI - 10.1002/mrc.2542
Subject(s) - chemistry , propylene carbonate , acetonitrile , inorganic chemistry , perchlorate , stability constants of complexes , isothermal microcalorimetry , titration , ligand (biochemistry) , solvent , solvent effects , lithium (medication) , ion , organic chemistry , aqueous solution , electrolyte , enthalpy , thermodynamics , biochemistry , physics , receptor , electrode , medicine , endocrinology
7 Li NMR titration was used to determine stepwise complexation constants for the second‐order complexation of lithium cation with 12‐crown‐4 in acetonitrile, propylene carbonate and a binary mixture of propylene carbonate and dimethyl carbonate. The anions used were perchlorate, hexaflurophosphate and trifluromethanesulfonate. A second ligand 1‐aza‐12‐crown‐4 was similarly investigated. The exchange between the free and complexed cation in these reactions is fast on an NMR timescale resulting in a single lithium peak which is a concentration‐weighted average of the free and bound species. Solvent effects show that the 1:1 complex is much more stable in acetonitrile than in propylene carbonate or in the propylene carbonate dimethyl carbonate mixture. Anion effects for a given solvent were small. Optimized geometries of the free ligands and the 1:1 and 1:2 (sandwich) metal–ligand complexes were predicted by hybrid‐density functional theory using the Gaussian 03 software package. Results were compared to literature values for 1:1 stability constants found by microcalorimetry for several of these systems and are found to be in good agreement. Although microcalorimetry only considered the formation of 1:1 complexes, 7 Li NMR shows evidence that both 1:1 and 1:2 complexes should be considered. Copyright © 2009 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom