z-logo
Premium
1 H and 13 C NMR chemical shift assignments and conformational analysis for the two diastereomers of the vitamin K epoxide reductase inhibitor brodifacoum
Author(s) -
Cort John R.,
Cho Herman
Publication year - 2009
Publication title -
magnetic resonance in chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.483
H-Index - 72
eISSN - 1097-458X
pISSN - 0749-1581
DOI - 10.1002/mrc.2475
Subject(s) - diastereomer , chemistry , chemical shift , stereochemistry , heteronuclear molecule , nmr spectra database , nuclear magnetic resonance spectroscopy , proton nmr , spectral line , physics , astronomy
Proton and 13 C NMR chemical shifts and 1 H 1 H scalar couplings for the two diastereomers of the potent vitamin K epoxide reductase (VKOR) inhibitor brodifacoum have been determined at 293 K from acetone solutions containing both diastereomers. To facilitate difficult assignments, homo‐ and heteronuclear correlation spectra were acquired at 750 and 900 MHz over 268–303 K temperature range. Conformations of both diastereomers inferred from the scalar couplings and 1‐D NOE measurements reveal that one diastereomer ( SS/RR ) adopts a strained geometry in the cyclohexene ring system of the tetralin group. The NMR spectra also show evidence of line broadening due to conformational exchange at room temperature for the SR/RS diastereomer. These assignments and conformational analyses may be useful in studies of biomolecular interactions of brodifacoum with target proteins such as VKOR and in source determination of brodifacoum. Copyright © 2009 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom