Premium
Heteronuclear dipolar decoupling effects on multiple‐quantum and satellite‐transition magic‐angle spinning NMR spectra
Author(s) -
Ganapathy S.,
Delevoye L.,
Amoureux J. P.,
Madhu P. K.
Publication year - 2008
Publication title -
magnetic resonance in chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.483
H-Index - 72
eISSN - 1097-458X
pISSN - 0749-1581
DOI - 10.1002/mrc.2286
Subject(s) - heteronuclear molecule , chemistry , decoupling (probability) , magic angle spinning , dipole , spectral line , nuclear magnetic resonance , spinning , solid state nuclear magnetic resonance , nmr spectra database , magic angle , heteronuclear single quantum coherence spectroscopy , molecular physics , nuclear magnetic resonance spectroscopy , quantum mechanics , physics , stereochemistry , organic chemistry , polymer chemistry , control engineering , engineering
We here report on the influence of heteronuclear dipolar decoupling on the 27 Al 3QMAS, 5QMAS, and the double‐quantum filter–satellite‐transition magic‐angle spinning (DQF‐STMAS) spectra of a strongly dipolar‐coupled system, gibbsite. The requirements for heteronuclear dipolar decoupling increase with the order of coherence evolving in the indirect dimension of a two‐dimensional (2D) experiment. The isotropic line width of the high‐resolution 2D spectra, in samples like gibbsite, is composed of four parts: the distribution of isotropic shifts (δ ISO , δ QIS ), the homogeneous broadening related to the proton–proton flip‐flop terms, the 27 Al 27 Al homonulcear dipolar couplings, and the 1 H 27 Al heteronuclear dipolar couplings. It is shown that, even in the case of gibbsite, where a strong proton–proton bath exists, the main resolution limiting factor in these experiments resides in the 1 H 27 Al dipolar interaction. Copyright © 2008 John Wiley & Sons, Ltd.