z-logo
Premium
Improving CBCT quality to CT level using deep learning with generative adversarial network
Author(s) -
Zhang Yang,
Yue Ning,
Su MinYing,
Liu Bo,
Ding Yi,
Zhou Yongkang,
Wang Hao,
Kuang Yu,
Nie Ke
Publication year - 2021
Publication title -
medical physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.473
H-Index - 180
eISSN - 2473-4209
pISSN - 0094-2405
DOI - 10.1002/mp.14624
Subject(s) - artificial intelligence , computer science , hounsfield scale , image quality , deep learning , cone beam computed tomography , feature (linguistics) , robustness (evolution) , pixel , pattern recognition (psychology) , mean squared error , nuclear medicine , mathematics , image (mathematics) , computed tomography , medicine , radiology , statistics , linguistics , philosophy , biochemistry , chemistry , gene
Purpose To improve image quality and computed tomography (CT) number accuracy of daily cone beam CT (CBCT) through a deep learning methodology with generative adversarial network. Methods One hundred and fifty paired pelvic CT and CBCT scans were used for model training and validation. An unsupervised deep learning method, 2.5D pixel‐to‐pixel generative adversarial network (GAN) model with feature mapping was proposed. A total of 12 000 slice pairs of CT and CBCT were used for model training, while ten‐fold cross validation was applied to verify model robustness. Paired CT–CBCT scans from an additional 15 pelvic patients and 10 head‐and‐neck (HN) patients with CBCT images collected at a different machine were used for independent testing purpose. Besides the proposed method above, other network architectures were also tested as: 2D vs 2.5D; GAN model with vs without feature mapping; GAN model with vs without additional perceptual loss; and previously reported models as U‐net and cycleGAN with or without identity loss. Image quality of deep‐learning generated synthetic CT (sCT) images was quantitatively compared against the reference CT (rCT) image using mean absolute error (MAE) of Hounsfield units (HU) and peak signal‐to‐noise ratio (PSNR). The dosimetric calculation accuracy was further evaluated with both photon and proton beams. Results The deep‐learning generated sCTs showed improved image quality with reduced artifact distortion and improved soft tissue contrast. The proposed algorithm of 2.5 Pix2pix GAN with feature matching (FM) was shown to be the best model among all tested methods producing the highest PSNR and the lowest MAE to rCT. The dose distribution demonstrated a high accuracy in the scope of photon‐based planning, yet more work is needed for proton‐based treatment. Once the model was trained, it took 11–12 ms to process one slice, and could generate a 3D volume of dCBCT (80 slices) in less than a second using a NVIDIA GeForce GTX Titan X GPU (12 GB, Maxwell architecture). Conclusion The proposed deep learning algorithm is promising to improve CBCT image quality in an efficient way, thus has a potential to support online CBCT‐based adaptive radiotherapy.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here