z-logo
Premium
Technical Note: Synthesizing of lung tumors in computed tomography images
Author(s) -
O'Briain Teaghan B.,
Yi Kwang Moo,
BazalovaCarter Magdalena
Publication year - 2020
Publication title -
medical physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.473
H-Index - 180
eISSN - 2473-4209
pISSN - 0094-2405
DOI - 10.1002/mp.14437
Subject(s) - computer science , artificial intelligence , graphical user interface , computed tomography , histogram , lung cancer , set (abstract data type) , computer vision , pattern recognition (psychology) , radiology , image (mathematics) , medicine , pathology , programming language
Purpose When investigating new radiation therapy techniques in the treatment planning stage, it can be extremely time consuming to locate multiple patient scans that match the desired characteristics for the treatment. With the help of machine learning, we propose to bypass the difficulty in finding patient computed tomography (CT) scans that match the treatment requirements. Furthermore, we aim to provide the developed method as a tool that is easily accessible to interested researchers. Methods We propose a generative adversarial network (GAN) to edit individual volumes of interest (VOIs) in pre‐existing CT scans, translating features of the healthy VOIs into features of cancerous volumes. Training and testing was done using VOIs from a dataset of 460 diagnostic and lung cancer screening CT scans. Agreement between real tumors and those produced by the editor was tested by comparing the distributions of several histogram parameters and second‐order statistics as well as using qualitative analysis. Results After training, the network was successfully able to map healthy CT segments to realistic looking cancerous volumes. Based on visual inspection, tumors produced by the editor were found to be both realistic and visually consistent with the surrounding anatomy when placed back into the original CT scan. Furthermore, the network was found to be able to extrapolate well beyond the upper size limit of the training set. Lastly, a graphical user interface (GUI) was developed to easily interact with the resulting network. Conclusion The trained network and associated GUI can serve as a tool to develop an abundance of lung cancer patient data to be used in treatment planning. In addition, this method can be extended to a variety of cancer types if given an appropriate baseline dataset. The GUI and instructions on how to utilize the tool have been made publicly available at https://github.com/teaghan/CT_Editor .

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom