z-logo
Premium
Efficient modeling of low‐resolution millimeter‐wave transceivers for massive MIMO wireless communications systems
Author(s) -
Estes Nicholas,
Gao Kang,
Hochwald Bertrand,
Laneman J. Nicholas,
Chisum Jonathan
Publication year - 2021
Publication title -
microwave and optical technology letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.304
H-Index - 76
eISSN - 1098-2760
pISSN - 0895-2477
DOI - 10.1002/mop.32727
Subject(s) - mimo , electronic engineering , amplifier , extremely high frequency , transceiver , computer science , 3g mimo , wireless , telecommunications , engineering , channel (broadcasting) , cmos
We present a high‐fidelity measurement‐based nonlinear model of low‐complexity millimeter‐wave transmit and receive circuits for design and analysis of 1‐bit on‐off‐key (OOK) massive MIMO wireless communications systems. The receive model is based upon a fabricated 38 GHz energy detector, representative of state‐of‐the‐art OOK millimeter‐wave receivers. The model is validated with measurements and includes nonlinear noise modeling. Performance of a large‐scale massive MIMO system is predicted with the model, and predictions are compared against a 4‐transmit‐element, N‐receive‐element testbed. Finally, we compute the channel capacity of several OOK massive MIMO systems, exploring tradeoffs in power consumption and number of transmit and receive cells. Results indicate a 1‐bit OOK array with low power pre‐amplifiers can achieve similar capacity to a classical linear receiver with less than one tenth the power consumption. The 1‐bit array compensates for the per‐cell simplicity by increasing the total number of cells while maintaining low overall power consumption.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here