z-logo
Premium
A compact W‐band quasi‐optical detector packaged by meta‐surface reflector and 3D‐printed lens
Author(s) -
Qiao HaiDong,
Liu Hao,
Mou JinChao,
Lv Xin
Publication year - 2020
Publication title -
microwave and optical technology letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.304
H-Index - 76
eISSN - 1098-2760
pISSN - 0895-2477
DOI - 10.1002/mop.32062
Subject(s) - optics , detector , reflector (photography) , responsivity , antenna (radio) , materials science , optoelectronics , physics , electrical engineering , engineering , light source
This article presents a compact W‐band quasi‐optical detector that can be easily extended into an array for focal plane imaging applications. The quasi‐optical detector consists of an antenna‐coupled detector packaged by a low‐profile meta‐surface reflector and a 3D‐printed lens. The antenna‐coupled detector with a GaAs Schottky diode is printed on a low‐cost and low‐loss laminate. To extract the detected low‐frequency signal within a small footprint, a pair of vertical metallic posts instead of conventional planar strips is designed and loaded at the ends of the antenna. For facilitating unidirectional radiation patterns, a low‐profile meta‐surface reflector with a thickness of λ g /8 is placed under the antenna‐coupled detector. In addition, a 3D‐printed dielectric lens is loaded upon the antenna‐coupled detector, which can enhance the radiation gain by 6 dB. Both the meta‐surface reflector and the 3D‐printed lens are fixed by an asymmetric H‐shaped framework, forming a low‐cost and lightweight package for the detector. Based on the proposed detector, a W‐band 1 × 16 array is experimentally demonstrated, exhibiting a responsivity of 100 V/W~410 V/W from 92 to 110 GHz. The total size of the array is only 27 λ × 4 λ × 1.8 λ, where λ is the free space wavelength at the center frequency.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom