Premium
Fermentation Kinetics of Selected Dietary Fibers by Human Small Intestinal Microbiota Depend on the Type of Fiber and Subject
Author(s) -
Trijp Mara P. H.,
Rösch Christiane,
An Ran,
Keshtkar Shohreh,
Logtenberg Madelon J.,
Hermes Gerben D. A.,
Zoetendal Erwin G.,
Schols Henk A.,
Hooiveld Guido J. E. J.
Publication year - 2020
Publication title -
molecular nutrition and food research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.495
H-Index - 131
eISSN - 1613-4133
pISSN - 1613-4125
DOI - 10.1002/mnfr.202000455
Subject(s) - prebiotic , inulin , fermentation , food science , polysaccharide , pectin , gut flora , chemistry , fructan , dietary fiber , biochemistry , biology , fructose
Scope An underexplored topic is the investigation of health effects of dietary fibers via modulation of human small intestine (SI) microbiota. A few previous studies hint at fermentation of some dietary fibers in the distal SI of humans and pigs. Here the potential of human SI microbiota to degrade dietary fibers and produce metabolites in vitro is investigated. Methods and Results Fructans, galacto‐oligosaccharides, lemon pectins, and isomalto/malto‐polysaccharides are subjected to in vitro batch fermentations inoculated with ileostomy effluent from five subjects. Fiber degradation products, formation of bacterial metabolites, and microbiota composition are determined over time. Galacto‐ and fructo‐oligosaccharides are rapidly utilized by the SI microbiota of all subjects. At 5h of fermentation, 31%–82% of galacto‐oligosaccharides and 29%–89% fructo‐oligosaccharides (degree of polymerization DP4‐8) are utilized. Breakdown of fructo‐oligosaccharides/inulin DP ≥ 10, lemon pectin, and iso‐malto/maltopolysaccharides only started after 7h incubation. Degradation of different fibers result in production of mainly acetate, and changed microbiota composition over time. Conclusion Human SI microbiota have hydrolytic potential for prebiotic galacto‐ and fructo‐oligosaccharides. In contrast, the higher molecular weight fibers inulin, lemon pectin, and iso‐malto/maltopolysaccharides show slow fermentation rate. Fiber degradation kinetics and microbiota responses are subject dependent, therefore personalized nutritional fiber based strategies are required.