Premium
Microbial Metabolites, Postbiotics, and Intestinal Epithelial Function
Author(s) -
Mayorgas Aida,
Dotti Isabella,
Salas Azucena
Publication year - 2021
Publication title -
molecular nutrition and food research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.495
H-Index - 131
eISSN - 1613-4133
pISSN - 1613-4125
DOI - 10.1002/mnfr.202000188
Subject(s) - dysbiosis , probiotic , inflammation , microbiome , microbiology and biotechnology , barrier function , medicine , immunology , gut flora , biology , bioinformatics , bacteria , genetics
Chronic inflammatory disorders are rising worldwide. The implication of the microbiota in persistent inflammation has been studied for years, but a direct causal relationship has not yet been stablished. Intestinal epithelial cells (IECs) form a protective barrier against detrimental luminal components. Indeed, a decrease in epithelial integrity may trigger a severe inflammatory reaction due to the infiltration of potentially harmful molecules and microorganisms. Bacterial imbalance, more commonly known as dysbiosis, occurs during inflammation and several strategies have been proposed to counteract this condition. Probiotics have been widely used to positively alter the inherited microbial composition and recover a eubiotic status. Nevertheless, probiotics are thought to impair the return of the indigenous microbiome, and to aggravate inflammation in compromised patients. In contrast, postbiotics—bacterial‐free metabolites secreted by probiotic strains—have been proposed as a better and safer strategy. Recent scientific studies that have demonstrated the immunomodulatory properties and epithelial protection of postbiotics are summarized in this review, with an emphasis on the available methods that are currently in use to better understand the role of postbiotics in health and nutrition.