z-logo
Premium
Anthocyanins and their physiologically relevant metabolites alter the expression of IL‐6 and VCAM‐1 in CD40L and oxidized LDL challenged vascular endothelial cells
Author(s) -
Amin Hiren P.,
Czank Charles,
Raheem Saki,
Zhang Qingzhi,
Botting Nigel P.,
Cassidy Aedín,
Kay Colin D.
Publication year - 2015
Publication title -
molecular nutrition and food research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.495
H-Index - 131
eISSN - 1613-4133
pISSN - 1613-4125
DOI - 10.1002/mnfr.201400803
Subject(s) - protocatechuic acid , anthocyanin , chemistry , biochemistry , vcam 1 , cyanidin , in vivo , biology , cell , food science , cell adhesion , antioxidant , microbiology and biotechnology
Scope In vitro and in vivo studies suggest that dietary anthocyanins modulate cardiovascular disease risk; however, given anthocyanins extensive metabolism, it is likely that their degradation products and conjugated metabolites are responsible for this reported bioactivity. Methods and results Human vascular endothelial cells were stimulated with either oxidized LDL (oxLDL) or cluster of differentiation 40 ligand (CD40L) and cotreated with cyanidin‐3‐glucoside and 11 of its recently identified metabolites, at 0.1, 1, and 10 μM concentrations. Protein and gene expression of IL‐6 and VCAM‐1 was quantified by ELISA and RT‐qPCR. In oxLDL‐stimulated cells the parent anthocyanin had no effect on IL‐6 production, whereas numerous anthocyanin metabolites significantly reduced IL‐6 protein levels; phase II conjugates of protocatechuic acid produced the greatest effects (>75% reduction, p ≤ 0.05). In CD40L‐stimulated cells the anthocyanin and its phase II metabolites reduced IL‐6 protein production, where protocatechuic acid‐4‐sulfate induced the greatest reduction (>96% reduction, p ≤ 0.03). Similarly, the anthocyanin and its metabolites reduced VCAM‐1 protein production, with ferulic acid producing the greatest effect (>65% reduction, p ≤ 0.04). Conclusion These novel data provide evidence to suggest that anthocyanin metabolites are bioactive at physiologically relevant concentrations and have the potential to modulate cardiovascular disease progression by altering the expression of inflammatory mediators.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here