Premium
Isolation enhancement of 5G multiple‐input multiple‐output microstrip patch antenna using metamaterials and the theory of characteristic modes
Author(s) -
Abdelaziz Ahmed,
Hamad Ehab K. I.
Publication year - 2020
Publication title -
international journal of rf and microwave computer‐aided engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.335
H-Index - 39
eISSN - 1099-047X
pISSN - 1096-4290
DOI - 10.1002/mmce.22416
Subject(s) - metamaterial , mimo , split ring resonator , computer science , metamaterial antenna , patch antenna , resonator , microstrip , electronic engineering , topology (electrical circuits) , microstrip antenna , bandwidth (computing) , antenna (radio) , isolation (microbiology) , acoustics , physics , telecommunications , optoelectronics , electrical engineering , engineering , antenna factor , channel (broadcasting) , microbiology and biotechnology , biology
This paper presents a compact 5G multiple‐input multiple‐output (MIMO) microstrip antenna with isolation enhancement based on a slotted complementary split‐ring resonator (SCSRR) and the theory of characteristic modes (TCMs). The metamaterial unit consists of three CSRR connected by extra slots. These added slots improve significantly the rejection response in terms of bandwidth and suppression. The dispersion diagram analysis is introduced to show the filtering characteristics of the band‐gap structure before and after adding these additional slots. The TCM is employed to investigate the behavior of this 5G MIMO antenna before and after adding the slotted CSRR. The TCM is also applied to the MIMO antenna system to build up a precise methodology that can foresee whether the isolation can be upgraded further or not. The slotted CSRR is inserted meticulously in specific locations to block the coupling modes and almost does not affect the results of the noncoupling modes to improve the isolation remarkably. With this slotted CSRR, a 27‐dB reduction in the mutual coupling between the two patch antennas is achieved. The whole design has been simulated utilizing the Microwave Studio CST ver. 18 simulator. The antenna being proposed is highly efficient and suitable for 5G wireless communication.