z-logo
Premium
Wideband reflectarray antenna using logarithmic patch element
Author(s) -
Heidari Abbas Ali,
GhafoorzadehYazdi Ali,
Bakhoda Mohsen
Publication year - 2020
Publication title -
international journal of rf and microwave computer‐aided engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.335
H-Index - 39
eISSN - 1099-047X
pISSN - 1096-4290
DOI - 10.1002/mmce.22377
Subject(s) - wideband , microstrip , microstrip antenna , center frequency , phase compensation , antenna (radio) , optics , radiation pattern , phase (matter) , patch antenna , materials science , bandwidth (computing) , physics , engineering , telecommunications , band pass filter , quantum mechanics
Abstract A wideband microstrip reflectarray antenna (RA) is proposed using a novel unit‐cell for X‐band applications. The unit‐cell is composed of a logarithmic toothed microstrip element and two‐variable phase‐delay lines (PDLs) for the required phase compensation in the RA. By adjusting the lengths of the PDLs, a smooth and almost linear phase variations of 627° is achieved at the frequency of 10 GHz. Based on the proposed element, a 144‐element center‐fed RA with dimensions of 216 mm × 216 mm is designed at 10 GHz and simulated using CST software. Then, a fabricated prototype RA is tested to validate the design approach. The maximum measured gain is 25.3 dB at 10.4 GHz, whereas the gain is 24.6 dB with 44.2% aperture efficiency at the design frequency of 10 GHz. Also, the measured gain frequency characteristic shows the 1 and 3‐dB gain bandwidths of 24.8% and 42.3%, respectively, and the measured radiation patterns verify the simulated ones as well.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here