z-logo
Premium
A novel hybrid algorithm based on FDTD and WCS‐FDTD methods
Author(s) -
Mai Huanxiao,
Chen Juan,
Yu Xumin,
Zhang Anxue
Publication year - 2020
Publication title -
international journal of rf and microwave computer‐aided engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.335
H-Index - 39
eISSN - 1099-047X
pISSN - 1096-4290
DOI - 10.1002/mmce.22166
Subject(s) - finite difference time domain method , grid , interpolation (computer graphics) , algorithm , computer science , stability (learning theory) , computation , computational science , mathematics , physics , optics , geometry , image (mathematics) , artificial intelligence , machine learning
In this article, a hybrid algorithm based on traditional finite‐difference time‐domain (FDTD) and weakly conditionally stable finite‐difference time‐domain (WCS‐FDTD) algorithm is proposed. In this algorithm, the calculation domain is divided into fine‐grid region and coarse‐grid region. The traditional FDTD method is used to calculate the field value in the coarse‐grid region, while the WCS‐FDTD method is used in the fine‐grid region. The spatial interpolation scheme is applied to the interface of the coarse grid region and fine grid region to insure the stability and precision of the presented hybrid algorithm. As a result, a relatively large time step size, which is only determined by the spatial cell sizes in the coarse grid region, is applied to the entire calculation domain. This scheme yields a significant reduction both of computation time and memory requirement in comparison with the conventional FDTD method and WCS‐FDTD method, which are validated by using numerical results.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here