z-logo
Premium
Computer‐aided design methodology for linearity enhancement of multiwatt GaN HEMT amplifiers using multiple parallel devices
Author(s) -
Saini Kanika,
Ezzeddine Amin,
Joudeh Waleed,
Huang Ho,
Raman Sanjay
Publication year - 2020
Publication title -
international journal of rf and microwave computer‐aided engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.335
H-Index - 39
eISSN - 1099-047X
pISSN - 1096-4290
DOI - 10.1002/mmce.22010
Subject(s) - linearity , high electron mobility transistor , dbc , amplifier , materials science , electronic circuit , biasing , microwave , electronic engineering , optoelectronics , transistor , computer science , electrical engineering , voltage , engineering , telecommunications , cmos
This article presents a design methodology for linearizing GaN HEMT amplifiers based on splitting a large FET into multiple parallel FETs with same total gate periphery and by biasing them individually. By varying the biases, the magnitude and the phase of the IMD3 components at the output of FET changes. A detailed simulation methodology using commercial microwave CAD software is presented. Simulation results show that by biasing one device in Class AB and other(s) in deep Class AB mode, IMD3 components of parallel FETs can be made out of phase to each other leading to cancellation and improvement in linearity. Three prototype circuits were simulated using (a) a single 5 mm FET (1 × 5 mm), (b) two parallel 2.5 mm FETs (2 × 2.5 mm), and (c) four parallel 1.25 mm FETs (4 × 1.25 mm), for a total gate periphery of 5 mm, over the frequency range of 0.8 to 1.0 GHz. IMD3 improvement up to 20 dBc was achieved with the 4 × 1.25 mm circuit when the FET biases were optimized. Measurement results show improvement in linearity up to 20 dBc for 4 × 1.25 mm circuit. The proposed method improves linearity without a substantial penalty on the power consumption and is straightforward to implement.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here