Premium
Reduced mutual coupling of compact MIMO antenna designed for WLAN and WiMAX applications
Author(s) -
Biswas Ashim Kumar,
Chakraborty Ujjal
Publication year - 2019
Publication title -
international journal of rf and microwave computer‐aided engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.335
H-Index - 39
eISSN - 1099-047X
pISSN - 1096-4290
DOI - 10.1002/mmce.21629
Subject(s) - wimax , mimo , wi fi , electronic engineering , bandwidth (computing) , microwave , electrical engineering , antenna (radio) , computer science , telecommunications , physics , wireless , engineering , channel (broadcasting) , wireless network
This communication describes a simple compact wide band multiple input multiple output (MIMO) antenna for Wireless Local Area Network (WLAN) and Worldwide Interoperability for Microwave Access (WiMAX) applications. The proposed antenna is integrated with an electromagnetic band gap (EBG) structure which is used to reduce the mutual coupling between the ports. The structure is excited by a line feed mechanism and investigated experimentally. The antenna covers the frequency range from 2.01 to 3.92 GHz with the corresponding fractional bandwidth of 64.42%. It fulfills the bandwidth requirements of WLAN (2.35‐2.5 GHz) and WiMAX (3.2‐3.85 GHz) bands where minimum port isolation is obtained around 29 dB throughout the entire application band. The proposed MIMO antenna has very low envelope correlation co‐efficient (ECC < 0.01) and high diversity gain (DG > 9.8). It also has very low channel capacity loss (CCL) which is found to be less than 0.2 Bit/s/Hz. The simulation results are compared with the measurement outcomes and found a good agreement between them.