Premium
Design of a compact triple band antenna with independent frequency tuning for MIMO applications
Author(s) -
Islam Sk Nurul,
Kumar Mukesh,
Sen Gobinda,
Das Santanu
Publication year - 2019
Publication title -
international journal of rf and microwave computer‐aided engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.335
H-Index - 39
eISSN - 1099-047X
pISSN - 1096-4290
DOI - 10.1002/mmce.21620
Subject(s) - reflection coefficient , antenna (radio) , mimo , wimax , split ring resonator , physics , electronic engineering , antenna factor , antenna efficiency , resonator , antenna measurement , acoustics , radiation pattern , optics , telecommunications , computer science , engineering , channel (broadcasting) , wireless
Abstract In this article, a planar, low profile microstrip line‐fed triple band multiple input multiple output (MIMO) antenna is presented for WiMax (2.5/3.5/5.5 GHz)/WLAN (2.4/3.6/5.8 GHz) applications simultaneously. The single element of the MIMO antenna consists of (i) a rectangular split ring resonator (SRR), (ii) a stepped impedance resonator (SIR) inside the SRR and (iii) a slot on the SIR. Each of the resonators generates its own individual band and each band is independently tunable. The antenna exhibits three operating bands at 2.35‐2.85 GHz, 3.25‐3.90 GHz and 5.45‐5.65 GHz. Four antenna elements are used to design the proposed MIMO antenna. The simulated results are observed and reported in terms of S‐parameters, gain, radiation patterns, envelope correlation coefficient (ECC), diversity gain (DG), channel capacity loss (CCL) and total active reflection coefficient. ECC and CCL are within the acceptable range defined for 4G and 5G application standards. To validate the simulation results a prototype structure is fabricated and the measured results are compared with those obtained from the simulation.