z-logo
Premium
Design of high gain/directional ultra‐wideband antenna for radar imaging systems
Author(s) -
Meena Madan L.,
Kumar Mithilesh
Publication year - 2019
Publication title -
international journal of rf and microwave computer‐aided engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.335
H-Index - 39
eISSN - 1099-047X
pISSN - 1096-4290
DOI - 10.1002/mmce.21543
Subject(s) - optics , ellipse , physics , beam diameter , bandwidth (computing) , wideband , antenna (radio) , acoustics , telecommunications , computer science , laser , astronomy , laser beams
A compact size of 40 × 40 mm 2 ( λ 0 ×  λ 0 ) semi‐elliptical slotted ground structure (SESGS) directional ultra‐wideband (UWB) antenna is proposed for radar imaging applications. A vertical semi‐elliptical slot is inserted into ground and subsequently, an axis of semi‐ellipse is rotated diagonally (with 45°) in direction of the substrate. Axes of semi‐ellipse are optimized symmetrically around the circular patch to work antenna as a reflector. Furthermore, semi‐elliptical slot is rotated horizontally (with 90°) again to improve the impedance bandwidth. Proposed antenna achieves fractional bandwidth around 83% covering the UWB frequency range from 4.40 to 10.60 GHz ( S 11  < −10 dB) having 4.5/6/7/8/9.3/10.2 GHz resonant frequencies. Also, antenna is capable to send low‐distortion Gaussian pulses with fidelity factor more than 95% in time‐domain. Measured gain and half power beam width (HPBW) are 6.1‐9.1 dBi and 44°‐29° in 4.40‐10.60 GHz band, respectively, which show an improvement of 1‐3 dBi in gain and half power beam‐width is reduced by 5°‐10° when compared with previously designed antennas. Experimental results show good agreement with CST simulation.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here