z-logo
Premium
Generalized Pareto ranking bisection for computationally feasible multiobjective antenna optimization
Author(s) -
Unnsteinsson Sigmar D.,
Koziel Slawomir
Publication year - 2018
Publication title -
international journal of rf and microwave computer‐aided engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.335
H-Index - 39
eISSN - 1099-047X
pISSN - 1096-4290
DOI - 10.1002/mmce.21406
Subject(s) - bisection method , mathematical optimization , multi objective optimization , pareto principle , computer science , ranking (information retrieval) , set (abstract data type) , antenna (radio) , iterative method , algorithm , mathematics , machine learning , telecommunications , programming language
Multiobjective optimization (MO) allows for obtaining comprehensive information about possible design trade‐offs of a given antenna structure. Yet, executing MO using the most popular class of techniques, population‐based metaheuristics, may be computationally prohibitive when full‐wave EM analysis is utilized for antenna evaluation. In this work, a low‐cost and fully deterministic MO methodology is introduced. The proposed generalized Pareto ranking bisection algorithm permits identifying a set of Pareto optimal sets of parameters representing the best trade‐offs between considered objectives. The subsequent designs are found by iterative partitioning of the intervals connecting previously obtained designs and executing Pareto‐ranking‐based poll search. The initial approximation of the Pareto front found using the bisection procedure is subsequently refined to the level of the high‐fidelity EM model of the antenna at hand using local optimization. The proposed framework overcomes a serious limitation of the original, recently reported, bisection algorithm, which was only capable of considering two objectives. The generalized version proposed here allows for handling any number of design goals. An improved poll search procedure has also been developed and incorporated. Our algorithm has been demonstrated using two examples of UWB monopole antennas with four figures of interest taken into account: structure size, reflection response, total efficiency, and gain variability.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here