z-logo
Premium
Substrate integrated low‐profile dual‐band magneto‐electric dipole antenna
Author(s) -
Shuai ChenYang,
Wang GuangMing
Publication year - 2018
Publication title -
international journal of rf and microwave computer‐aided engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.335
H-Index - 39
eISSN - 1099-047X
pISSN - 1096-4290
DOI - 10.1002/mmce.21229
Subject(s) - balun , dipole antenna , optoelectronics , materials science , radiation pattern , microstrip antenna , antenna measurement , multi band device , antenna (radio) , dipole , optics , physics , electrical engineering , engineering , quantum mechanics
In this article, a novel substrate integrated low‐profile dual‐band magneto‐electric (ME) dipole antenna is proposed. The entire antenna is constructed by four‐layer printed circuit boards (PCBs). Consequently, the height of the proposed antenna is decreased from 0.25λ 0 to 0.11λ 0 (λ 0 is the free‐space wavelength at 5.5 GHz). By introducing rectangular patches with different sizes as electric dipoles, dual operating bands are achieved. Meanwhile, for the purpose of improving the impedance matching at the lower frequency band, a pair of complementary split‐ring resonators (CSRRs) is etched on the larger rectangular patches. Moreover, the short walls composed of plated through holes operate as a magnetic dipole. The antenna is fed by an equivalent wideband microstrip‐to‐parallel stripline balun. The results show that the antenna obtains dual bandwidths of 4.31‐4.71 GHz (8.8%) and 5.07‐5.89 GHz (14.9%) with VSWR <2, which can be applied for C‐band and 5G WiFi. Over the dual operating bands, stable gain and unidirectional radiation patterns with low polarization and low back lobe are also obtained.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here