z-logo
Premium
LTCC‐based monolithic system‐in‐package (SiP) module for millimeter‐wave applications
Author(s) -
Lee Young Chul,
Park Chul Soon
Publication year - 2016
Publication title -
international journal of rf and microwave computer‐aided engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.335
H-Index - 39
eISSN - 1099-047X
pISSN - 1096-4290
DOI - 10.1002/mmce.21032
Subject(s) - dbc , amplifier , materials science , insertion loss , system in package , electrical engineering , extremely high frequency , center frequency , optoelectronics , radio frequency , stripline , antenna (radio) , band pass filter , engineering , telecommunications , chip , cmos
A miniature LTCC system‐in‐package (SiP) module has been presented for millimeter‐wave applications. A typical heterodyne 61 GHz transmitter (Tx) has been designed and fabricated in a type of the SiP module as small as 36 × 12 × 0.9 mm 3 . Five active chips including a mixer, driver amplifier, power amplifier, and two frequency multipliers were mounted on the single LTCC package substrate, in which all passive circuits such as a stripline (SL) BPF, 2 × 2 array patch antenna, surface‐mount technology (SMT) pads, and intermediate frequency (IF) feeding lines have been monolithically embedded by using vertical and planar transitions. The embedded SL BPF shows the center frequency of 60.8 GHz, BW of 4.1%, and insertion loss of 3.74 dB. The gain and 3‐dB beam width of the fabricated 2 × 2 array patch antenna are 7 dBi and 36 degrees, respectively. The assembled LTCC 61 GHz Tx SiP module achieves an output power of 10.2 dBm and an up‐conversion gain of 7.3 dB. Because of the integrated BPF, an isolation level between a local oscillation (LO) and RF signal is below 26.4 dBc and the spurious level is suppressed by lower than 22.4 dBc. By using a 61 GHz receiver (Rx) consisting of off‐the‐shelf modules, wireless communication test was demonstrated by comparing measured IF spectrums at the Tx and Rx part.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here