Premium
RFID tag antenna for ultra and super high frequency band applications
Author(s) -
Kamalvand Pouria,
Pandey Gaurav Kumar,
Meshram Manoj Kumar
Publication year - 2016
Publication title -
international journal of rf and microwave computer‐aided engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.335
H-Index - 39
eISSN - 1099-047X
pISSN - 1096-4290
DOI - 10.1002/mmce.21012
Subject(s) - antenna (radio) , antenna measurement , coaxial antenna , antenna factor , monopole antenna , antenna rotator , ground plane , patch antenna , physics , antenna tuner , dipole antenna , electrical engineering , acoustics , optics , computer science , telecommunications , engineering
ABSTRACT A novel dual‐band antenna for radio frequency identification tag is proposed for ultra high frequency (UHF: 915 MHz) and super high frequency (SHF: 2450 MHz) bands. The proposed tag antenna is a single sided dual‐antenna structure, designed on the grounded (metallic) dielectric substrate. The proposed tag antenna can be used on any kind of surfaces including metals without severe performance degradation due to its metallic ground plane. At UHF band, proposed tag antenna works as dual‐antenna structure. In the dual‐antenna structure, one antenna works for receiving and another for backscattering. Due to separate backscatterer, the maximum differential radar cross section improved and results in the enhancement of the maximum read range. Whereas at SHF band, proposed antenna works as conventional single antenna structure and during operations it switches between receiving and backscattering modes. The proposed antenna consists of a meandered line antenna and a rectangular patch antenna loaded with an F‐shaped and an inverted L‐shaped slots. The S ‐parameters are measured by means of differential probe technique. Simulated and measured results are observed in good agreement. The read range is observed about 5 and 6 m at 915 and 2450 MHz, respectively. © 2016 Wiley Periodicals, Inc. Int J RF and Microwave CAE 26:640–650, 2016.