Premium
Recurrent neural network technique for behavioral modeling of power amplifier with memory effects
Author(s) -
Yan Shuxia,
Zhang Chuan,
Zhang QiJun
Publication year - 2015
Publication title -
international journal of rf and microwave computer‐aided engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.335
H-Index - 39
eISSN - 1099-047X
pISSN - 1096-4290
DOI - 10.1002/mmce.20861
Subject(s) - recurrent neural network , computer science , long short term memory , artificial neural network , behavioral modeling , nonlinear system , artificial intelligence , physics , quantum mechanics
A new technique for behavioral modeling of power amplifier (PA) with short‐ and long‐term memory effects is presented here using recurrent neural networks (RNNs). RNN can be trained directly with only the input–output data without having to know the internal details of the circuit. The trained models can reflect the behavior of nonlinear circuits. In our proposed technique, we extract slow‐changing signals from the inputs and outputs of the PA and use these signals as extra inputs of RNN model to effectively represent long‐term memory effects. The methodology using the proposed RNN for modeling short‐term and long‐term memory effects is discussed. Examples of behavioral modeling of PAs with short‐ and long‐term memory using both the existing dynamic neural networks and the proposed RNNs techniques are shown. © 2014 Wiley Periodicals, Inc. Int J RF and Microwave CAE 25:289–298, 2015.