Premium
Bacteria foraging optimization in antenna engineering: An application to array fault finding
Author(s) -
Choudhury Balamati,
Acharya Om Prakash,
Patnaik Amalendu
Publication year - 2013
Publication title -
international journal of rf and microwave computer‐aided engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.335
H-Index - 39
eISSN - 1099-047X
pISSN - 1096-4290
DOI - 10.1002/mmce.20659
Subject(s) - fault (geology) , antenna (radio) , antenna array , set (abstract data type) , convergence (economics) , algorithm , computer science , microwave , power (physics) , sample (material) , field (mathematics) , electronic engineering , engineering , mathematics , physics , telecommunications , geology , quantum mechanics , seismology , economic growth , pure mathematics , economics , thermodynamics , programming language
Finding fault elements in linear antenna arrays using bacteria foraging optimization (BFO) is presented. One of the better options of array diagnosis is to perform it by measuring the radiated field, because in this case, removal of the array from its working site is not required and thereby not interrupting its normal operation. This task of fault finding from far‐field data is designed as an optimization problem where the difference between the far‐field power pattern obtained for a given configuration of failed element(s) and the measured one is minimized w. r. t. the excitations of the array elements. This set of excitations on comparison with the excitations of the original array gives the idea of the fault position and their type, such as either complete fault or partial fault. BFO being relatively new to microwave community when compared with other soft‐computing techniques, its performance was observed w. r. t. time of computation and convergence of the iterative process. Possibility of finding the faults from random sample points and use of minimum number of sample points for array fault finding are the novelties of the present work. © 2012 Wiley Periodicals, Inc. Int J RF and Microwave CAE, 2013.