z-logo
Premium
Steady solutions of the Navier–Stokes equations with threshold slip boundary conditions
Author(s) -
Roux C. Le,
Tani A.
Publication year - 2006
Publication title -
mathematical methods in the applied sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.719
H-Index - 65
eISSN - 1099-1476
pISSN - 0170-4214
DOI - 10.1002/mma.802
Subject(s) - mathematics , boundary value problem , slip (aerodynamics) , uniqueness , mathematical analysis , bounded function , nonlinear system , dirichlet boundary condition , no slip condition , mixed boundary condition , traction (geology) , physics , quantum mechanics , thermodynamics , geomorphology , geology
We establish the wellposedness of the time‐independent Navier–Stokes equations with threshold slip boundary conditions in bounded domains. The boundary condition is a generalization of Navier's slip condition and a restricted Coulomb‐type friction condition: for wall slip to occur the magnitude of the tangential traction must exceed a prescribed threshold, independent of the normal stress, and where slip occurs the tangential traction is equal to a prescribed, possibly nonlinear, function of the slip velocity. In addition, a Dirichlet condition is imposed on a component of the boundary if the domain is rotationally symmetric. We formulate the boundary‐value problem as a variational inequality and then use the Galerkin method and fixed point arguments to prove the existence of a weak solution under suitable regularity assumptions and restrictions on the size of the data. We also prove the uniqueness of the solution and its continuous dependence on the data. Copyright © 2006 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom