z-logo
Premium
One and three limit cycles in a cubic predator–prey system
Author(s) -
Huang Xuncheng,
Wang Yuanming,
Zhu Lemin
Publication year - 2006
Publication title -
mathematical methods in the applied sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.719
H-Index - 65
eISSN - 1099-1476
pISSN - 0170-4214
DOI - 10.1002/mma.791
Subject(s) - uniqueness , mathematics , limit cycle , limit (mathematics) , generalization , predation , predator , mathematical analysis , mathematical economics , ecology , biology
A cubic differential system is proposed, which can be considered a generalization of the predator–prey models, studied recently by many authors. The properties of the equilibrium points, the existence of a uniqueness limit cycle, and the conditions for three limit cycles are investigated. The criterion is easy to apply in applications. Copyright © 2006 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom