z-logo
Premium
On non‐stationary viscous incompressible flow through a cascade of profiles
Author(s) -
Feistauer Miloslav,
Neustupa Tomáš
Publication year - 2006
Publication title -
mathematical methods in the applied sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.719
H-Index - 65
eISSN - 1099-1476
pISSN - 0170-4214
DOI - 10.1002/mma.755
Subject(s) - mathematics , cascade , bounded function , mathematical analysis , domain (mathematical analysis) , boundary value problem , dirichlet boundary condition , boundary (topology) , flow (mathematics) , mixed boundary condition , compressibility , incompressible flow , dirichlet distribution , geometry , mechanics , physics , chemistry , chromatography
The paper deals with theoretical analysis of non‐stationary incompressible flow through a cascade of profiles. The initial‐boundary value problem for the Navier–Stokes system is formulated in a domain representing the exterior to an infinite row of profiles, periodically spaced in one direction. Then the problem is reformulated in a bounded domain of the form of one space period and completed by the Dirichlet boundary condition on the inlet and the profile, a suitable natural boundary condition on the outlet and periodic boundary conditions on artificial cuts. We present a weak formulation and prove the existence of a weak solution. Copyright © 2006 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom