z-logo
Premium
Stabilization in a high‐dimensional chemotaxis system involving arbitrary superlinear degradation
Author(s) -
Zhang Wenji
Publication year - 2021
Publication title -
mathematical methods in the applied sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.719
H-Index - 65
eISSN - 1099-1476
pISSN - 0170-4214
DOI - 10.1002/mma.7503
Subject(s) - mathematics , bounded function , neumann boundary condition , homogeneous , domain (mathematical analysis) , limit (mathematics) , mathematical analysis , chemotaxis , boundary (topology) , homogeneous function , matrix (chemical analysis) , function (biology) , zero (linguistics) , pure mathematics , combinatorics , materials science , linguistics , philosophy , composite material , evolutionary biology , biology , biochemistry , chemistry , receptor
The chemotaxis‐consumption system with generalized logistic sourceu t = Δ u − ∇ · ( u S ( x , u , v ) · ∇ v ) + λ u − μ u α , x ∈ Ω , t > 0 ,v t = Δ v − u v , x ∈ Ω , t > 0 ,is considered under homogeneous Neumann boundary conditions in a bounded smooth domain Ω ⊂ ℝ n ( n ≥ 1 ) with suitably regular positive initial data. Here λ ,  μ  > 0, α  > 1 and S ∈ C 2 ( Ω ¯× [ 0 , ∞ )2 ; ℝ n × n ) is a given matrix‐valued function. We construct globally defined solutions in an appropriately generalized sense and prove that these solutions converge to the spatially homogeneous equilibriumλ μ1 α − 1, 0in the large time limit.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom