Premium
Applications of constructed new families of generating‐type functions interpolating new and known classes of polynomials and numbers
Author(s) -
Simsek Yilmaz
Publication year - 2021
Publication title -
mathematical methods in the applied sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.719
H-Index - 65
eISSN - 1099-1476
pISSN - 0170-4214
DOI - 10.1002/mma.7485
Subject(s) - mathematics , stirling numbers of the second kind , stirling number , generating function , difference polynomials , macdonald polynomials , orthogonal polynomials , bernoulli number , discrete mathematics , type (biology) , partial fraction decomposition , algebra over a field , pure mathematics , combinatorics , rational function , ecology , biology
The aim of this article is to construct some new families of generating‐type functions interpolating a certain class of higher order Bernoulli‐type, Euler‐type, Apostol‐type numbers, and polynomials. Applying the umbral calculus convention method and the shift operator to these functions, these generating functions are investigated in many different aspects such as applications related to the finite calculus, combinatorial analysis, the chordal graph, number theory, and complex analysis especially partial fraction decomposition of rational functions associated with Laurent expansion. By using the falling factorial function and the Stirling numbers of the first kind, we also construct new families of generating functions for certain classes of higher order Apostol‐type numbers and polynomials, the Bernoulli numbers and polynomials, the Fubini numbers, and others. Many different relations among these generating functions, difference equation including the Eulerian numbers, the shift operator, minimal polynomial, polynomial of the chordal graph, and other applications are given. Moreover, further remarks and comments on the results of this paper are presented.