z-logo
Premium
Regularity in Sobolev spaces of steady flows of fluids with shear‐dependent viscosity
Author(s) -
Ebmeyer Carsten
Publication year - 2006
Publication title -
mathematical methods in the applied sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.719
H-Index - 65
eISSN - 1099-1476
pISSN - 0170-4214
DOI - 10.1002/mma.748
Subject(s) - sobolev space , mathematics , bounded function , domain (mathematical analysis) , viscosity , mathematical analysis , boundary value problem , pressure gradient , order (exchange) , pure mathematics , physics , mechanics , thermodynamics , finance , economics
The system$${-{\rm{div}}\,{\rm\bf{S}}({\rm\bf{D}}({\rm\bf{u}}))+({\rm\bf{u}}\cdot\nabla){\rm\bf{u}}+\nabla\pi\,{=}\,{\rm\bf{f}}, \quad{\rm{div}}\,{\rm\bf{u}}\,{=}\,0}$$is considered on a bounded three‐dimensional domain under no‐stick boundary value conditions, where S has p ‐structure for some p <2 and D ( u ) is the symmetrized gradient of u . Various regularity results for the velocity u and the pressure π in fractional order Sobolev and Nikolskii spaces are obtained. Copyright © 2006 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom