z-logo
Premium
Stable solutions to quasilinear Schrödinger equations of Lane–Emden type with a parameter
Author(s) -
Wei Yunfeng,
Yang Hongwei,
Yu Hongwang,
Hu Rui
Publication year - 2021
Publication title -
mathematical methods in the applied sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.719
H-Index - 65
eISSN - 1099-1476
pISSN - 0170-4214
DOI - 10.1002/mma.7385
Subject(s) - mathematics , bounded function , type (biology) , sign (mathematics) , class (philosophy) , mathematical analysis , function (biology) , comparison theorem , mathematical physics , pure mathematics , ecology , artificial intelligence , evolutionary biology , computer science , biology
In this paper, we study the following quasilinear Schrödinger equations− Δ u − Δ ( | u | 2 α ) | u | 2 α − 2 u = ω ( x ) | u | q − 1 u , x ∈ ℝ N , where α > 1 2is a parameter, q > 3 α − 1 + α 2 α , ω ( x ) ∈ C ( ℝ N \ { 0 } ) is a positive function. We establish a Liouville type theorem for the class of stable bounded sign‐changing solutions under suitable assumptions on ω ( x ),  q ,  α and N .

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom