z-logo
Premium
Energy estimates to the Cauchy problem of a weakly damped Klein‐Gordon equation with variable‐exponent nonlinearity
Author(s) -
Mustafa Muhammad I.
Publication year - 2021
Publication title -
mathematical methods in the applied sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.719
H-Index - 65
eISSN - 1099-1476
pISSN - 0170-4214
DOI - 10.1002/mma.7327
Subject(s) - mathematics , klein–gordon equation , exponent , nonlinear system , mathematical analysis , multiplier (economics) , variable coefficient , cauchy problem , mathematical physics , initial value problem , variable (mathematics) , energy (signal processing) , physics , quantum mechanics , statistics , philosophy , linguistics , economics , macroeconomics
In we consider the following Klein‐Gordon equationu t t − Δ u + u + α ( t )u tm ( · ) − 2u t = 0 inR n  × (0,  T ) with a nonlinear feedback having a variable exponent m ( x ) and a time‐dependent coefficient α ( t ). We use the multiplier method to establish energy decay results depending on both m and α .

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom