z-logo
Premium
New blow‐up conditions to p ‐Laplace type nonlinear parabolic equations under nonlinear boundary conditions
Author(s) -
Chung SoonYeong,
Hwang Jaeho
Publication year - 2021
Publication title -
mathematical methods in the applied sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.719
H-Index - 65
eISSN - 1099-1476
pISSN - 0170-4214
DOI - 10.1002/mma.7172
Subject(s) - mathematics , eigenvalues and eigenvectors , nonlinear system , laplace transform , mathematical analysis , type (biology) , boundary value problem , laplace operator , operator (biology) , robin boundary condition , laplace's equation , boundary (topology) , neumann boundary condition , physics , biochemistry , chemistry , repressor , gene , transcription factor , ecology , quantum mechanics , biology
In this paper, we study blow‐up phenomena of the following p ‐Laplace type nonlinear parabolic equationsu t = ∇ · ρ ( | ∇ u | p ) | ∇ u | p − 2 ∇ u + f ( x , t , u ) ,in Ω × ( 0 , t ∗ ) , under nonlinear mixed boundary conditionsρ ( | ∇ u | p ) | ∇ u | p − 2∂ u ∂ n + θ ( z ) ρ ( | u | p ) | u | p − 2 u = h ( z , t , u ) ,onΓ 1 × ( 0 , t ∗ ) , and u = 0 on Γ 2  × (0,  t ∗ ) such thatΓ 1 ∪ Γ 2 = ∂ Ω , where f and h are real‐valued C 1 ‐functions. To discuss blow‐up solutions, we introduce new conditions: For each x  ∈ Ω , z  ∈  ∂ Ω , t  > 0 , u  > 0 , and v  > 0 ,( D p1 ) : α F ( x , t , u ) ≤ u f ( x , t , u ) + β 1u p + γ 1 ,α H ( z , t , u ) ≤ u h ( z , t , u ) + β 2u p + γ 2 ,( D p2 ) : δ v ρ ( v ) ≤ P ( v ) ,for some constants α , β 1 , β 2 , γ 1 , γ 2 , and δ satisfyingα > 2 ,δ > 0 ,β 1 +λ R + 1λ Sβ 2 ≤α δ p − 1ρ mλ R ,and 0 ≤ β 2 ≤α δ p − 1ρ mλ S , whereρ m : = inf w > 0 ρ ( w ) , P ( v ) = ∫ 0 v ρ ( w ) d w , F ( x , t , u ) = ∫ 0 u f ( x , t , w ) d w , and H ( x , t , u ) = ∫ 0 u h ( x , t , w ) d w . Here, λ R is the first Robin eigenvalue and λ S is the first Steklov eigenvalue for the p ‐Laplace operator, respectively.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom