z-logo
Premium
Global regularity problem of two‐dimensional magnetic Bénard fluid equations
Author(s) -
Ma Liangliang
Publication year - 2021
Publication title -
mathematical methods in the applied sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.719
H-Index - 65
eISSN - 1099-1476
pISSN - 0170-4214
DOI - 10.1002/mma.7165
Subject(s) - thermal diffusivity , dissipation , laplace operator , mathematics , fractional laplacian , diffusion , magnetic diffusivity , partial differential equation , mathematical analysis , physics , magnetic field , thermodynamics , magnetohydrodynamics , quantum mechanics
In the paper, we devote to broadening the current global regularity results for the two‐dimensional magnetic Bénard fluid equations. We study three cases: (i) fractional Laplacian dissipation (‐ Δ) α u , partial magnetic diffusion ( ∂x 2x 22b 1 , ∂x 1x 12b 2 ) , and Laplacian thermal diffusivity Δ θ ; (ii) partial fractional dissipation ( Λx 22 αu 1 , Λx 12 αu 2 ) , partial magnetic diffusion ( ∂x 2x 22b 1 , ∂x 1x 12b 2 ) , and Laplacian thermal diffusivity Δ θ ; (iii) partial fractional magnetic diffusion ( Λx 22 βb 1 , Λx 12 βb 2 ) , Laplacian thermal diffusivity Δ θ , and without Laplacian dissipation Δ u (i.e., μ = 0 ), and establish the global regularity for each cases.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom