z-logo
Premium
An optimal regularity criterion for the 3D MHD equations in homogeneous Besov spaces
Author(s) -
Guo Zhengguang,
Zhang Shunhang
Publication year - 2020
Publication title -
mathematical methods in the applied sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.719
H-Index - 65
eISSN - 1099-1476
pISSN - 0170-4214
DOI - 10.1002/mma.6923
Subject(s) - mathematics , magnetohydrodynamics , homogeneous , mathematical analysis , compressibility , besov space , weak solution , pure mathematics , functional analysis , combinatorics , physics , magnetic field , mechanics , interpolation space , biochemistry , chemistry , quantum mechanics , gene
In this paper, we establish a new regularity criterion for weak solutions to the 3D incompressible MHD equations in terms of two pairs of ( ∂ i u i ,  ∂ i b i ) ( i = 1,2 , 3 ) . More precisely, it is proved that the weak solution ( u ,  b ) is smooth on (0,  T ] , provided that for some i ,  j  ∈ {1, 2, 3} with i  ≠  j , it holds that∂ iu i , ∂ ju j , ∂ ib i , ∂ jb j ∈ L p0 , T ;B ˙q , ∞ 0 ( ℝ 3 ) ,2 p + 3 q = 2 , 3 ≤ q ≤ ∞ .

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom