Premium
A high‐order B‐spline collocation scheme for solving a nonhomogeneous time‐fractional diffusion equation
Author(s) -
Roul Pradip,
Goura VMK Prasad
Publication year - 2020
Publication title -
mathematical methods in the applied sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.719
H-Index - 65
eISSN - 1099-1476
pISSN - 0170-4214
DOI - 10.1002/mma.6760
Subject(s) - mathematics , collocation method , discretization , mathematical analysis , dirichlet boundary condition , orthogonal collocation , collocation (remote sensing) , numerical analysis , fractional calculus , b spline , boundary value problem , differential equation , ordinary differential equation , remote sensing , geology
A high‐accuracy numerical approach for a nonhomogeneous time‐fractional diffusion equation with Neumann and Dirichlet boundary conditions is described in this paper. The time‐fractional derivative is described in the sense of Riemann‐Liouville and discretized by the backward Euler scheme. A fourth‐order optimal cubic B‐spline collocation (OCBSC) method is used to discretize the space variable. The stability analysis with respect to time discretization is carried out, and it is shown that the method is unconditionally stable. Convergence analysis of the method is performed. Two numerical examples are considered to demonstrate the performance of the method and validate the theoretical results. It is shown that the proposed method is of order O (Δ x 4 + Δ t 2 − α ) convergence, where α ∈ (0,1) . Moreover, the impact of fractional‐order derivative on the solution profile is investigated. Numerical results obtained by the present method are compared with those obtained by the method based on standard cubic B‐spline collocation method. The CPU time for present numerical method and the method based on cubic B‐spline collocation method are provided.