z-logo
Premium
The existence of positive solutions to a non‐local singular boundary value problem
Author(s) -
O'Regan Donal,
Staněk Svatoslav
Publication year - 2005
Publication title -
mathematical methods in the applied sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.719
H-Index - 65
eISSN - 1099-1476
pISSN - 0170-4214
DOI - 10.1002/mma.676
Subject(s) - mathematics , regularization (linguistics) , boundary value problem , singular solution , mathematical analysis , singular value , pure mathematics , boundary values , value (mathematics) , combinatorics , eigenvalues and eigenvectors , physics , quantum mechanics , artificial intelligence , computer science , statistics
We consider the non‐local singular boundary value problem$$x\prime\prime=f(x)-\mu {{q(t)x\prime(0)} \over {\int_{0}^{1}q(s) h(x(s)){\rm d}s}} h(x), \quad x(0)= x\prime(1)=0$$where q ∈ C 0 ([0,1]) and f , h ∈ C 0 ((0,∞)), lim   x →0   +f ( x )=−∞, lim   x →0   +h ( x )=∞. We present conditions guaranteeing the existence of a solution x ∈ C 1 ([0,1]) ∩ C 2 ((0,1]) which is positive on (0,1]. The proof of the existence result is based on regularization and sequential techniques and on a non‐linear alternative of Leray–Schauder type. Copyright © 2005 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom