z-logo
Premium
Boundedness in a three‐dimensional two‐species and two‐stimuli chemotaxis system with chemical signalling loop
Author(s) -
Pan Xu,
Wang Liangchen,
Zhang Jing
Publication year - 2020
Publication title -
mathematical methods in the applied sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.719
H-Index - 65
eISSN - 1099-1476
pISSN - 0170-4214
DOI - 10.1002/mma.6621
Subject(s) - mathematics , bounded function , chemotaxis , neumann boundary condition , domain (mathematical analysis) , homogeneous , loop (graph theory) , signalling , boundary (topology) , mathematical analysis , control theory (sociology) , combinatorics , chemistry , receptor , mathematical economics , biochemistry , computer science , control (management) , artificial intelligence
The following two‐species chemotaxis system with a chemical signalling loop under Lotka–Volterra competitive kineticsu t = Δ u − χ 1 ∇ · ( u ∇ v ) + μ 1 u ( 1 − u − a 1 w ) , x ∈ Ω , t > 0 ,v t = Δ v − v + w , x ∈ Ω , t > 0 ,w t = Δ w − χ 2 ∇ · ( w ∇ z ) − χ 3 ∇ · ( w ∇ v ) + μ 2 w ( 1 − w − a 2 u ) , x ∈ Ω , t > 0 ,z t = Δ z − z + u , x ∈ Ω , t > 0 ,is considered in a bounded domain Ω ⊂ ℝ 3with homogeneous Neumann boundary conditions, and the parameters μ i , a i >0 ( i =1,2) and χ j >0( j =1,2,3), the initial data are nonnegative and satisfy ( u 0 , v 0 , w 0 , z 0 ) ∈ C 0 ( Ω ¯ ) × C 1 ( Ω ¯ ) × C 0 ( Ω ¯ ) × C 1 ( Ω ¯ ) . Global boundedness solution of this system is proved under the conditionsμ 1 > max10 + 21 +34χ 1 2 + χ 2 2 + χ 3 2+ 1 ,2 χ 1 2 +4 + 310 + 22χ 1 2 + χ 2 2 + χ 3 2χ 1 2andμ 2 > max2 χ 3 2 +4 + 310 + 22χ 1 2 + χ 2 2 + χ 3 2χ 3 2 +10 + 21 +34χ 1 2 + χ 2 2 + χ 3 2+ 1 ,2 χ 2 2 +4 + 310 + 22χ 1 2 + χ 2 2 + χ 3 2χ 2 2.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom