z-logo
Premium
Nehari‐type ground state solutions for a Choquard equation with lower critical exponent and local nonlinear perturbation
Author(s) -
Tang Xianhua,
Wei Jiuyang,
Chen Sitong
Publication year - 2020
Publication title -
mathematical methods in the applied sciences
Language(s) - Bosnian
Resource type - Journals
SCImago Journal Rank - 0.719
H-Index - 65
eISSN - 1099-1476
pISSN - 0170-4214
DOI - 10.1002/mma.6404
Subject(s) - mathematics , riesz potential , perturbation (astronomy) , exponent , ground state , sobolev space , mathematical analysis , critical exponent , nonlinear system , type (biology) , mathematical physics , quantum mechanics , geometry , physics , scaling , ecology , linguistics , philosophy , biology
This paper deals with the following Choquard equation with a local nonlinear perturbation:− Δ u + u =I α ∗ | u |α N + 1| u |α N − 1 u + λ | u | p − 2 u , x ∈ R N ;u ∈ H 1 ( R N ) ,where N  ≥ 1, α ∈(0, N ), λ >0, 2< p <2 ∗ , andI α : R N → R is the Riesz potential. The exponentα N + 1 is critical with respect to the Hardy‐Littlewood‐Sobolev inequality. In the cases when 2 < p < 4 N + 2 , p = 4 N + 2 , and4 N + 2 < p < 2 ∗ , respectively, we prove the above equation admits a Nehari‐type ground state solution if λ > λ ∗ for some given number λ ∗ .

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom