Premium
On the existence of least energy solution for Kirchhoff equation in R 3
Author(s) -
Hu Tingxi,
Lu Lu
Publication year - 2020
Publication title -
mathematical methods in the applied sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.719
H-Index - 65
eISSN - 1099-1476
pISSN - 0170-4214
DOI - 10.1002/mma.6216
Subject(s) - mathematics , energy (signal processing) , mathematical analysis , mathematical physics , type (biology) , combinatorics , statistics , ecology , biology
We are concerned with the following Kirchhoff‐type equation:− a + b ∫R 3| ∇ u | 2 d x Δ u +h ∞ + h ( x ) u = ( q ∞ + q ( x ) ) | u | p − 2 u inR 3 , where a , b > 0 are constants,h ∞ , q ∞ > 0 , 2 < p < 6 , and h ( x ) , q ( x ) are positive functions inC 2 ( R 3 ) satisfying h ( x ) ↘ 0 , q ( x ) ↘ 0 as | x | → ∞ . Under certain assumptions on h ( x ) , q ( x ) andh ∞ , q ∞ , we prove the existence of least energy solution for the aforementioned Kirchhoff‐type equation.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom