z-logo
Premium
Existence results for a fractional elliptic system with critical Sobolev‐Hardy exponents and concave‐convex nonlinearities
Author(s) -
Zhang Jinguo,
Hsu TsingSan
Publication year - 2020
Publication title -
mathematical methods in the applied sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.719
H-Index - 65
eISSN - 1099-1476
pISSN - 0170-4214
DOI - 10.1002/mma.6134
Subject(s) - mathematics , sobolev space , bounded function , critical exponent , domain (mathematical analysis) , fractional laplacian , exponent , regular polygon , nonlinear system , mathematical analysis , p laplacian , laplace operator , pure mathematics , scaling , geometry , physics , linguistics , philosophy , boundary value problem , quantum mechanics
In this paper, we study the following nonlinear fractional Laplacian system with critical Sobolev‐Hardy exponent( − Δ ) s u − γ u | x | 2 s= λ f ( x ) | u | q − 2 u | x | α+ 2 η η + θ h ( x ) | u | η − 2 u | v | θ| x | βinΩ ,( − Δ ) s v − γ v | x | 2 s= μ g ( x ) | v | q − 2 v | x | α+ 2 θ η + θ h ( x ) | u | η | v | θ − 2 v | x | βinΩ ,u = v = 0inR N ∖ Ω ,where 0 ∈ Ω is a smooth bounded domain inR N , 0 < s < 1 , 1 ≤ q < 2 , 0 ≤ α , β < 2 s < N , 0 ≤ γ < γ H , η , θ > 1 satisfy η + θ = 2 s * ( β ) ,2 s * ( β ) = 2 ( N − β ) N − 2 sis the critical Sobolev‐Hardy exponent, λ , μ > 0 are parameters, f , g and h are nonnegative functions on Ω . Using the variational methods and analytic techniques, we prove that the critical fractional Laplacian system admits at least two positive solutions when the pair of parameters ( λ , μ ) belongs to a suitable subset ofR + 2 .

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom