z-logo
Premium
The norm of the characteristic function of a set in the John‐Nirenberg space of exponent p
Author(s) -
Blasco Oscar,
EspinozaVillalva Carolina
Publication year - 2020
Publication title -
mathematical methods in the applied sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.719
H-Index - 65
eISSN - 1099-1476
pISSN - 0170-4214
DOI - 10.1002/mma.6124
Subject(s) - mathematics , nirenberg and matthaei experiment , exponent , norm (philosophy) , standard probability space , lebesgue measure , measure (data warehouse) , space (punctuation) , pure mathematics , lebesgue integration , measurable function , mathematical analysis , function (biology) , lp space , discrete mathematics , banach space , philosophy , linguistics , database , evolutionary biology , political science , computer science , law , biology , bounded function
We find the concrete value of ‖ χ A‖J N p ( R )for any measurable set A ⊂ R of positive and finite Lebesgue measure, whereJ N pstands for the John‐Nirenberg space of exponent 1 ≤ p ≤ ∞ . In the caseI 0 = [ 0 , 1 ] we show that ‖ χ I‖J N p ( I 0 ) = 2 ℓ ( 1 − ℓ ) for any interval I ⊂ I 0with | I | = ℓ and any 1 ≤ p ≤ p ℓwherep ℓ = max1 − ℓ ℓ , ℓ 1 − ℓmax1 − ℓ ℓ , ℓ 1 − ℓ− 1 .

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom