z-logo
Premium
Dynamical stability of compressible drops and stars
Author(s) -
Beyer K.,
Günther M.
Publication year - 2005
Publication title -
mathematical methods in the applied sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.719
H-Index - 65
eISSN - 1099-1476
pISSN - 0170-4214
DOI - 10.1002/mma.592
Subject(s) - mathematics , linearization , compressibility , mathematical analysis , boundary value problem , cylinder , a priori and a posteriori , stability (learning theory) , space (punctuation) , classical mechanics , geometry , mechanics , nonlinear system , physics , quantum mechanics , computer science , philosophy , linguistics , epistemology , machine learning
Interest is directed to linearized free boundary motion of a compressible liquid subject to surface tension and self‐gravitation respectively. Linearization relative to an a‐priori given solution to the non‐linear equations leads to a non‐local second order evolution problem to be posed in a space‐time cylinder with variable cross section subject to Fréchet boundary conditions along the lateral boundary part. Well‐posedness of the corresponding initial value problem in a natural weak formulation is proved. Copyright © 2005 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom