Premium
Ground state solutions for a class of gauged Schrödinger equations with subcritical and critical exponential growth
Author(s) -
Shen Liejun
Publication year - 2019
Publication title -
mathematical methods in the applied sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.719
H-Index - 65
eISSN - 1099-1476
pISSN - 0170-4214
DOI - 10.1002/mma.5905
Subject(s) - mathematics , nehari manifold , exponential growth , ground state , exponential function , class (philosophy) , nonlinear system , state (computer science) , mathematical analysis , pure mathematics , mathematical physics , physics , quantum mechanics , algorithm , artificial intelligence , computer science
We study a class of gauged nonlinear Schrödinger equations− Δ u + ω u + λ∫ | x | ∞h ( s ) s u 2 ( s ) d s +h 2 ( | x | ) | x | 2) u = f ( u ) inR 2 ,u ∈ H r 1 ( R 2 ) ,where ω , λ >0 and h ( s ) = ∫ 0 sr 2 u 2 ( r ) d r . Under some suitable assumptions on f with critical exponential growth, we obtain a positive ground state solution by the non‐Nehari manifold method. When f ( u ) has subcritical exponential growth, we prove the existence of a positive ground state solution by using a new approach. Our results generalize and improve the ones in Ji‐Fang [J. Math. Anal. Appl. 450 (2017) 578‐591], Byeon et al [J. Funct. Anal. 263 (2012) 1575‐1608], and some other related literatures.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom