Premium
Hermite‐Hadamard type inequalities for generalized Riemann‐Liouville fractional integrals of h ‐convex functions
Author(s) -
Dragomir Silvestru Sever
Publication year - 2021
Publication title -
mathematical methods in the applied sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.719
H-Index - 65
eISSN - 1099-1476
pISSN - 0170-4214
DOI - 10.1002/mma.5893
Subject(s) - mathematics , hadamard transform , hermite polynomials , convex function , type (biology) , fractional calculus , pure mathematics , mathematical analysis , regular polygon , ecology , geometry , biology
In this paper, we establish some Hermite‐Hadamard type inequalities for the Generalized Riemann‐Liouville fractional integralsI a + , g α f andI b − , g α f , where g is a strictly increasing function on a , b , having a continuous derivative ona , band under the assumption that the composite function f ∘ g −1 is h ‐convex ong a , g b. Some applications for Hadamard fractional integrals and s ‐Godunova‐Levin type convex functions are also provided.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom