z-logo
Premium
Schrödinger‐Poisson system with Hardy‐Littlewood‐Sobolev critical exponent
Author(s) -
Su Yu,
Wang Li,
Han Tao
Publication year - 2019
Publication title -
mathematical methods in the applied sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.719
H-Index - 65
eISSN - 1099-1476
pISSN - 0170-4214
DOI - 10.1002/mma.5694
Subject(s) - mathematics , sobolev space , exponent , mathematical analysis , critical exponent , schrödinger's cat , poisson distribution , perturbation (astronomy) , transformation (genetics) , initial value problem , infinity , sobolev inequality , mathematical physics , quantum mechanics , geometry , physics , philosophy , linguistics , statistics , scaling , biochemistry , chemistry , gene
In this paper, we consider the following Schrödinger‐Poisson system:− Δ u + λ ϕ | u |2 α ∗ − 2 u =∫ R 3| u |2 β ∗| x − y | 3 − βd y| u |2 β ∗ − 2 u , inR 3 ,( − Δ )α 2ϕ = A α − 1| u |2 α ∗, inR 3 ,where parameters α , β ∈(0,3), λ >0, A α = Γ ( 3 − α 2 )2 α π 3 2Γ ( α 2 ) ,2 α ∗ = 3 + α , and2 β ∗ = 3 + β are the Hardy‐Littlewood‐Sobolev critical exponents. For α < β and λ >0, we prove the existence of nonnegative groundstate solution to above system. Moreover, applying Moser iteration scheme and Kelvin transformation, we show the behavior of nonnegative groundstate solution at infinity. For β < α and λ >0 small, we apply a perturbation method to study the existence of nonnegative solution. For β < α and λ is a particular value, we show the existence of infinitely many solutions to above system.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here