z-logo
Premium
Existence and non‐existence of global solutions of a non‐local wave equation
Author(s) -
Ackleh Azmy S.,
Deng Keng
Publication year - 2004
Publication title -
mathematical methods in the applied sciences
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.719
H-Index - 65
eISSN - 1099-1476
pISSN - 0170-4214
DOI - 10.1002/mma.565
Subject(s) - mathematics , combinatorics , traveling wave , value (mathematics) , initial value problem , mathematical physics , mathematical analysis , statistics
We study the initial value problem$$ u_{tt} = u_{xx} + {\|u (\cdot,t) \| } ^{p}, \, - \infty{<}x{<}\infty,\ t{>}0$$$$ u(x,0) = f(x),u_{t}{(x,0)}\,{=}\,g(x), \, - \infty{<}x{<}\infty$$ where $ \|u(\cdot,t)\| = \int \nolimits ^ {\infty} _ {- \infty}\varphi(x) | u( x,t ) | {\rm{ d }} x$ with φ( x )⩾0 and $ \int \nolimits^{\infty} _ {-\infty} \varphi (x) \, {\rm{d}}x\,= 1$ . We show that solutions exist globally for 0< p ⩽1, while they blow up in finite time if p >1. We also present the growth rate at blow‐up. Copyright © 2004 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom